矿业工程学科解读

刘军连出诊时间和医院 http://m.39.net/pf/a_4305593.html

击上方蓝色字

  矿业工程专业就业岗位   采矿工程师、地质工程师、采矿工程、销售工程师、选矿工程师、采矿技术员、矿长、测量工程师、矿山地质工程师、技术员、地质环境工程师、安全工程师等等。

第四轮学科评估结果

本一级学科中,全国具有“博士授权”的高校共18所,本次参评18所;部分具有“硕士授权”的高校也参加了评估;参评高校共计28所;16家科研机构的66个学科、5家党校的20个学科和中国科学院大学的48个学科也申请参加了评估(注:评估结果相同的高校排序不分先后)。

注:第四轮学科评估首次采用“分档”方式公布评估结果,不公布得分、不公布名次,不强调单位间精细分数差异和名次前后。采用按百分位进行分档的方式。根据“学科整体水平得分”的位次百分位,将前70%的学科分为9档公布:前2%(或前2名)为A+,2%~5%为A(不含2%,下同),5%~10%为A-,10%~20%为B+,20%~30%为B,30%~40%为B-,40%~50%为C+,50%~60%为C,60%~70%为C-。

看了这篇文章,还敢说对“矿物加工”很了解吗?

(本文来自网络)

学科概述

选矿学是用物理、化学的方法,对天然矿物资源(通常包括金属矿物、非金属矿物、煤炭等)进行选别、分离、富集其中的有用矿物的科学技术,其目的是为冶金、化工等行业提供合格原料。

矿物加工学是在选矿学的基础上发展起来的,是用物理、化学、生物的方法,对天然矿物资源进行加工(包括分离、富集、提纯、提取、深加工等),以获取有用物质的科学技术。其目的已不单纯是为其他行业提供合格原料,也可利用其直接得到金属、矿物材料等。

选矿学科的形成

人类利用矿物资源已有数千年的历史。无论是公元前几千年的古埃及,还是中世纪的罗马帝国时代,或者是中国古代,由于科学技术水平整体落后,社会生产力低,人类利用的矿物资源主要是通过手工作业从天然矿石中得到的,如淘金、人工溜槽、手动跳汰筛、洗矿槽等原始重选方法及鹅毛蘸油刮取浮在水面上的金粉等原始浮选方法。我国古代将原始的重选、浮选总结为“澄、淘、飞、跌”。我国明代宋应星所著《天工开物》(年)一书中,对铁砂和锡砂的开采选别已有描述。这些手工作业虽然有近代“表层浮选”、“重选”的影子,但还算不上是一门工业技术,这种现象一直延伸到19世纪中期。

在19世纪末至20世纪20年代,世界工业生产快速发展,对矿物原料的需求增大,促使技术发展,特别是20世纪20年代初,浮选药剂在浮选中的工业应用,使选矿技术(包括破碎、筛分、磨矿、重选、电选、磁选、浮选等)能处理大部分天然矿物原料。从那时起,选矿技术已成为一门人类从天然矿石中选别、富集有用矿物原料的成熟的工业技术,并得到广泛的应用。

1、选矿学科理论基础

重选的理论基础

随着流体力学的发展,重力选矿的基础研究起步较早。19世纪下半叶,奥地利人Rittinger提出了“等降现象”,Monroe等进一步提出“干涉沉降”。20世纪40年代,原苏联学者施马茨柯夫提出了跳汰是在上升水流中“按悬浮体的相对密度分层”的学说;德国学者Mayer从床层位能降的角度解释了分层过程;英国学者Bagnoid在50年代观察到了剪切运动下层流、斜面流中多层粒群的松散分层现象。这些学说构成了重选的理论基础。

电磁理论基础

在电磁选矿方面,由于物理学的发展,人们早就认识到可用永久磁铁选别磁铁矿石。当电磁铁被用作磁选机的磁场并有了各种工业生产的电磁选矿机后,电磁选矿理论也已初步确立。

浮选理论基础

在浮选方面,从20世纪30年代开始,美国的Taggart及原苏联的Plaksins等先后提出了捕收剂的“化学反应假说”或“溶度积假说”,以解释重金属硫化矿的可浮性顺序。美国的Gaudin、原苏联的Bogdmov及澳大利亚的Wark等较多地研究了矿物的润湿性与可浮性的关系、浮选剂的吸附作用机理、浮选的活化等。美国的D.W.Fuerstenau等系统地研究了矿物表面电性与可浮性的关系。到60年代前后,浮选的三大基本理论(润湿理论、吸附理论及双电层理论)已初步形成。

2、学科体系

(1)碎磨。以岩石力学为学科基础,通过机械力作用使矿石块度减小至适于工艺选别的粒度范围,并使有用矿物与脉石之间彼此解离。

(2)重选。以流体力学为学科基础,根据不同矿物的密度差异在一定的介质中进行不同矿物的分选。

(3)电磁选。以电磁学为学科基础,根据不同矿物磁性的差异分选不同矿物。

(4)浮选。以表面化学为学科基础,根据不同矿物表面物理化学性质的差异,实现不同矿物的分选。

这个时期的选矿主要是从天然矿石(金属矿、非金属矿、煤炭等)中,分离、富集其中的有用矿物,为冶金、化工、建材提供原料。

国外所用“选矿”词汇多为“mineraldressing”。

3、选矿学面临的问题

20世纪60年代以来,随着世界经济的快速发展,一方面人类对矿物资源的需求不断增加;另一方面,矿物资源中富矿减少、贫细矿物资源增加,而且矿山、冶炼厂排出的废水、固体废弃物等对环境的污染与治理问题日益受到重视,传统的选矿技术与理论已不能完全适应并解决这些问题。

矿物加工学科的形成

这就需要综合利用多学科的知识与新成就,寻找新的学科起点,开发新的科学技术,以实现矿物资源的综合利用,包括分离、富集贫细矿物资源的新技术、工艺和设备,对矿物的提纯与精加工,环境的综合治理,矿物新用途的开发等。矿物资源的利用已不单纯是通过“选矿”得到矿产品的问题,而是综合“加工”利用的问题。为此,近几十年来选矿及相邻学科的科技工作者在选矿学科及交叉学科领域,进行了大量的基础理论与工艺技术的研究。同时,由于相邻学科的发展,如电化学、量子化学、表面及胶体化学、紊流力学、生物工程、冶金学、材料科学与工程及计算机科学与技术在选矿学科领域中的应用,形成许多新的学科方向和各种加工利用矿物资源的新技术。

随着利用矿物资源的新技术的发展,选矿已不能涵盖多数新的加工利用矿物资源的科学领域,“矿物加工”呼之欲出。矿物加工学科无论学科基础、学科领域及其研究对象等方面都远比传统选矿学科更广、更深。

在我国,经过近10年酝酿,于20世纪90代在国家教委招生目录上将“选矿”更名为“矿物加工”,学者出版了大量的著作。

1、矿物加工的任务与工艺

随着学科发展,矿物加工学科已经发生并还在发生巨大的调整及变化。一些适合于处理贫矿、复杂矿的技术和直接提取有用成分的技术正在发展应用。

矿物加工的对象已从天然矿产资源扩展到二次资源的回收及利用。各种固体废弃物,例如尾矿、炉渣、粉煤灰、金属废料、电器废料、塑料垃圾、生活垃圾乃至土壤都成了加工对象,经过加工又转化为有用的资源。

由于现代科技的发展及人类社会的进步,需要开发超纯、超细及具有特殊功能的矿物原料及矿物材料。化学提取以及生物工程与机械加工的结合在金属矿及非金属矿的加工中早已屡见不鲜。非金属矿的深加工进一步扩展并丰富了这种结合,例如高岭土的超声剥片,石墨及各种层状矿物的有机及无机嵌层等。

矿物加工的任务也发生了变化。矿物加工已不仅是为各种工业提供合格的矿物原料,例如精矿粉或中间产品,而是扩展成了可以生产超纯、超细及具有特殊功能的矿物材料以及矿物制品的工业。矿物材料工程主要是以非金属矿石或矿物为原料(或基料),通过一定的深加工工艺制取具有确定物化性能的无机非金属材料及器件的技术。矿物材料有着巨大的应用前景,例如,沸石太阳能板,蒙脱石干燥剂,叶腊石高温绝缘体及导弹密封材料,钠云母密封材料,羟基磷灰石骨骼材料,硅藻土牙模材料,火山岩防火材料等。

现代矿物加工工程所包括的单元作业,它们大体包括:粉碎、分级、超细颗粒制备、物理分选(重选、磁电选、光电选、放射选等)、浮选及其他界面分选、化学处理及生物提取、固液分离(沉降、过滤、干燥)、成型及造粒、气固分离一收尘、物料贮运等等。

2、矿物加工学科方向

(1)浮选化学。包括浮选电化学、浮选溶液化学和浮选表面及胶体化学。

(2)复合物理场矿物加工。根据流变学、紊流力学、电磁学等研究重力场、电磁力场或复合物理场(重力+磁力)中颗粒运动行为,确定细粒矿物的分级、分选条件,如磁流体水力旋流器分选、振动脉动高梯度磁选、流化床层干法选煤等。

(3)高效低毒药剂分子设计。根据量子化学、有机化学、表面化学研究药剂的结构与性能关系,针对特定的用途,设计新型高效矿物加工用药剂。

(4)矿物资源的生化提取。用生物浸出、化学浸出、溶剂萃取、离子交换等处理复杂贫细矿物资源,如低品位铜矿、铀矿、金矿的提取,煤脱硫等。由于细菌兼有氧化、吸附、降解等作用,因此生化提取不仅强化浸出过程,而且在环境与工艺控制上具有独特的优势。生化提取的基础理论与技术的研究近几年已成为矿物加工学科的重要方向之一。

(5)直接还原与矿物原料造块。主要从事矿物原料造块与精加工方面的科学研究,研究铁精矿煤基因回转窑直接还原、粉体物料成型等过程的机理。

(6)复杂贫细矿物资源综合利用。研究选—冶联合、选矿、多种选矿工艺(重、磁、浮)联合等处理一些大型复杂贫细多金属矿的工艺技术和基础理论,研究资源综合利用效益。

(7)矿物精加工与矿物材料。通过提纯、超细粉碎、表面改性等方法,不经冶炼,将矿物直接加工成可用的材料,如性能优良的润滑剂——超纯辉钼矿的加工,功能陶瓷所需超细锆英砂、高岭土的加工,电子浆料所需超细金红石的加工,民用、工业用型煤、水煤浆的加工,煤炭地下气化等。

(8)矿物加工过程计算机技术。用计算机科学技术对矿物加工过程进行模拟、仿真及优化、预测、设计,建立矿物加工过程专家系统,实现矿物加工过程的计算机管理与控制。

3、矿物加工学科的挑战

经过几十年的发展,矿物加工学科已形成了较为完整的学科体系,发展了许多新的矿物加工技术,但随着未来人类可利用资源的变化及现有技术的局限性,矿物加工科技的发展已面临许多挑战。人类社会生活的发展要求矿物加工科技发展的目标是实现矿物加工过程的“高效益、低能耗、无污染”。

矿物加工学科的进一步发展,面临着来自资源变化与所需技术难度方面的挑战。

(1)复杂贫细矿物资源的综合回收

人类对矿物资源的消耗逐年增加,而易选矿物资源的不断开采利用,越来越多的是复杂、贫细、大型多金属矿床需要被开采利用,这些矿床的特点是金属品种及伴生稀有、贵金属品种多、品位低、难处理。现有矿物加工技术在处理这些矿物资源时,面临能耗高、综合利用率低、环境污染等问题。

(2)废石及尾矿的加工利用

在金属矿选矿过程中,经过碎磨过程消耗了大量原材料和能耗,一般只回收了占总矿石质量约10%的有色金属矿物或约30%的黑色金属矿物,大量的伴生非金属矿(尾矿)未能利用。综合加工利用矿山在开采过程中剥离的废石、表外矿及尾矿中的有价金属等,需要新的加工利用技术。

(3)矿物精加工技术

传统的矿物加工以提供精矿及粗级矿产品为主,产品的附加值低,而且也不能满足现代科技发展对矿物材料性能要求提高的需要。对金属矿物,特别是非金属矿物进行高纯化、超细化、表面改性等精加工,生产适合电子、宇航、兵器、高技术陶瓷、冶金、化工等不同行业所需的矿物材料,已成为现代矿物加工技术的重点发展趋势之一。

(4)洁净煤技术

煤炭是重要的能源,在中国尤其如此。但燃煤给环境带来的污染已经成为全球密切

转载请注明:http://www.abuoumao.com/hytd/3108.html

网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

当前时间: 冀ICP备19029570号-7